REPORT OF ACCIDENT ON

 NEW YORK CENTRAL \& HUDSON RIVER RAILROAD AT HYDE PARK, N Y MARCH 31, 1912
BY TIIE (HIEF INSPECTOR OF

 SACETY APPLIANCESac Companied by
REPORT OF TIIE ENGINEER-PHYSICIST OF IHE BUREAU OF STANDARDS

PRIVTLD By ORDER OF LHE COMRISSION

SEPTEMBER 41912

Wabhington
1912

INTERSTATE COMMERCE COMMISSION

REPORT OF THE CHIEF INSPECTOR OF SAFETY APPLIANCES COVERING HIS INVESTIGATION OF A DERAILMENT WHICH OCCURRED ON THE NEW YORK CENTRAL \& HUDSON RIVER RAILROAD NEAR HYDE PARK, N Y, MARCH 31, 1912, ACCOMPANIED BY REPORT OF THE ENGINEERPHYSICIST OF THE BUREAU OF STANDARDS COVERING HIS INVESTIgation of the track conditions, as well as of the broken rail SUPPOSED TO HAVE CAUSED THIS DERAILMENT

September 4, 1912
To the Commission
On March 31, 1912, a passenger tran was deraled on the New Yorlc Central \& Hudson Ruver Rallroad near Hyde Park, N Y, resulting in the mujury of 51 passengers, 1 tramman, 3 postal employees, 5 Pullman employees, and 13 dining car employees
After an investigation as to the nature and causes of this accident and of the circumstances connected therewith, I beg to submit the following report
This train was second No 26, and was known as the Chicago section of the Twentieth Century Limited It consisted of engine No 3414, one buffet car, four sleeping cars, one dining car, and one observation car, all of steel construction except the dimng car, which had a steel underframe with wood superstructure The train was in charge of Conductor Lee and Engineman Ryan It left Albany, N Y, at 745 a $\mathrm{m}, 1$ hour and 15 minutes late, and was deraled at 858 a m at a point about $1 \nmid$ mules south of Hyde Park
The Hudson Division of the New York Central \& Hudson River Ralload at the place where this accident occuried is a double track line ruuning north and south The movement of trains is governed by automatic block signals The track is laid with 100 -pound steel rals, with about 20 pine ties under each rall A small percentage of the ties had been treated with creosote and tie plates were used on these treated ties The ballast $1 s$ crushed limestone The ralls are double spiked on the outside and single spiked on the inside Six hole angle bars are used to splice the rails

About 1 mule south of Hyde Parle station there $1 s$ a curve of nearly 2° leading toward the east and passing through a rock cut Just beyond the middle of this curve is an overhead bridge, and just north
of thas bualge the fist andications of the deadilmend nete found These consisted of wheel mars on the outsade adr marlin on the thes and two bolta biohen out of an angle bat These mith weie
 vestigation was supposed to have catised the deramment fhe distance trom the fist marks of deandment to the pount whe the engine and tenden -topped wa- about 1 roo feet and the outade 1 and was thoned ove thoughont thas whole distance Sean a mule noith of the overhead bundge there 15 a tiack water pan 1 too feet in length when engmes scoop water On the dhishon the speed of ri uns while pasang orel water pans la limuted by time-t ard duk to to male- pet hour and on all other pats of thas divi-1on the -pect ot pabemger tians durng the aeve neather of the past winter seacon wis limited bu spectal bulletin onder to 60 miles per hour

Atter the acodent the engme dendel and buffet da were still
 fande wor not denaled the ran tender wheel- had tallen berneen the ball the ontsile formand wheels of the buttel cal weme standing m

 was entuely deraled and onl one set of tuck 1 endumed under it
 not th wend down an embanment and came to sest on the uce at the edoe of the Itudson River thace of them In mo on then ardes and the other fuo femaning mpieht None of the cals wa- telesoped on (1) in-hed

Ingineman Rian tated that the -peed of the tadm at the waten

 none at a speed of 48 ol 30 miles per hour Ste noticed nothmo
 busct Engmeman Rian also atated that the ugnals at towel No ba wele eet at clear This wondd mathente that it that time the inl- in
 electare tiark racuat
 accident wat about yo mules per hour Ile noticed nothipg mambad bintal the an brakes weae applieal is of the the hersting of all dil hore

 engmeen-phasmet at the bunean acompanted me to the weme of the
accident and we made a careful exammation of the tiack and roadbed Portronc of the boken and were sent to the Lackanama ited Co at Buffalo and there subjected to chop test- The preces of thas bioken aul aud the two abls which weac immerlately noith of it in the thack were sent to the Burean of standads where they were sub-
 gation ale set torth in M_{1} Honauds report which together with the illusinations accompany ing it is attached to and made a part of thas report

The desalment occuried m a cat the diandge of which was poos The ground had been altemately thanng and ficesing and tho created considerable unevenness in the tack and roadbed On the day precedmg the accident the section gang mathage of thas tiad had been rooking in thas cut and had placed shams under some of the rals The section foncman stated that shmo had been placed under the bioken 1 all but no woik had been clone nou th of that lal on that date Howere there were shmm under the wal momedatel, nosth of the broken ral, and in this vicinity mans thims were used 10 mantan propei level of both sals the hime rating an thacknens nlom i quatrio of an meh to 1 mely In some matances shams wese used on a mumber of ties in succession The accompanting photo-

 lustiate the methor of himming emploser mo the thats ut the docident Fhe nest photogaph hows hgh hamming at the wate
 ral lerel

The ginge of the wack tol, 00 feet noth of the place nhene the

 the complate destuction of the tiach no mustilements wate mate south of the ponnt where the deablment oecured

 forced outwad probibla bo the engme the fate wheel- to drop be-
 ticalls ub-tantaterl lat the condition of the -poke- and -pike hotein the tie atter the readinent A numbers of the pone on the mode of the thad wall beyond the matial matis of the denalment weac lett practically undi-tubed and the spatio- on the ota-me at the ral were crowrled outwand

In allustiation Yo 2 accompanying Mr Horad's ieport the first rail that ras disturbed is maked No 1 On the mside of this rail thete were 11 cpikes that were partinlly pulled the spikes farthect Gouth bemg lifted the most On the maide of aal No 3 the first seren apikes were left intact in the thes, the outside spikes having been cromded outwad more than then width, as is evidenced by the tops of the spice holes beng elongated This clealy hons that the track spread at thas point and it is believed that this occured under the engine on account of the higl speed however the frot wheel-

Ghuming on nerth bourd track opporite point of teendent illustrat. ing methed of slummang employ ed an thiv tolumt:
to drop between the rals were the cear tender wheels, which ran along in this poation until the engme came to a stop coonding outwand the wert rals of the track The flage malks on the webs of these aals mdeate that the wheels on that side of the tram and along on the webs of the orestumed rals

Attention is called to Mi Inowards dicensaion of the plogressive features of the destraction of the tack in this deadment and to his statements that the spreachng of 1 auls No 12 and 3 was doubtless
the cause of the deralment the firacture of rall No 4 bemg the result of and not the cause of the accident

Attention is also called to that poition of Mr Howards repoit relating to tests of rals, showing that while the clop tests of preces of the bioken 1 all did not disclose anv imperfections sub--equent exammation made by the Bureau of Standards as to the structural soundness of the broken preces ievealed streaks or seams m the motal But the exammation showed that whle seams were not entuely absent fet this was a bette ianl than any of the other wals nolved in accidents which had been exammed and reported upon To determme the tensile stiength of the steel in the broken iall tests were made of longitudinal and cioss-section specimens taken fiom tha ral Seams were plesent in each specimen These te-t diw-

cloned much gieater tensile stiength of the longitudnal -peomenand confimed tatements made in presious repoits upon defective ralc, namelt that coosinise stiesses are clirectis accountable for flange breaks in the bases of ials in selvice and this ls due to the fact that on account of longitudinal seams in the metal lals we not able to withstand sereie bending strans in a ciossmise diection M_{L} Howad, in the accompanying repoit points out that • flange frictures of the base in a crosenise direction are known to be the mocommon flactures of rals when in selvice" Plesent steel ral specifications do not 1 ecfune tests in the direction in whel a als most commonly fall The tests now requined atram the steel in a longitudmal diection but no bending tests in a crosswise direction ane
requened In the teals conducted at the Bueau of Standads the specimens displared good bending propeities when longitudinalls ctramed but under crossmise bending the flanges were broken with lamited elongation Piespat anl specificitions contann no reque-ment- as to elistic limut on tensile strength of the metal althongh in the care of pactically all other steel materals the perificitions piescible ceitanu vilues of elastic limit and tensale strengrth

The facts dusclosed by the mestigation of this deralment call attention to the need of collecting data on ticele conditions such as the actual stresses whech ue set up br loromotines anil cais of ritiferent weights and at raimg -peeds and of dehmele determmong
 service conditions

Mi IIowad also poonts out the fact that-

The hue of clemoncition between safe und unsite conditions his lion been

 staur till en $^{\circ}$

Whate the im-tinctions to engmemen iequied that the a chould not
 with a -peed recorder and an menteration made be the Sen Tonk Pablic actuce Comminam aeond ilistrict howed that the -peorl limit had mot been stictis obsetsed In hecking ins the tecoth

 hom was exceeded of thene aces these weme $1+2$ where the -pred was between 60 , and 70 milen per hom 122 where the -peed was between 70 and 50 miles pei hour and 26 where the speed exceeted an mule- pea hour

Sotw thatandmo the Lart that Loth Enememan Ruan and Cueman

 ber ond whese the tram piuted
 jected to cevere stiams which requmed comstant mopertion mat tir-
 Whale the a als and（ies weie in rood condition companatuel ten tie plates wese uarl

On decount of the heaving of the padbed due to the action of
 In thas comection the following is quoterl from We Howatla a－ poit

One oldons femedy tor thin condition s－the we of longel pukes

In mam other deadment that have been materteated foed was

 al exatho to tra condation－

It none of there cases was thene ams speerl reatiction mather it
 the thath was hinown to be poon In the first a ase thene is in ，had stieteh of tarke whith was unate tor hagh apeerl but no slon weles haul been waned mat no slon boad had been mstalled Whume the

 had been katacd lion thme to time but none al them wa－in eden at the time of thas remalment Chiee of tha demalment－otatad an atadght thek and wo of them on cunse of about 31°

 592ハーーロー－
pionale for the safe operation of tuans at high speed It is beliesed that menns should be taken to iscentan the limit of speed it wheh tuans can be safely operatod and to protide an adequate margin betueco thas limat of suietr and the highe-t specd permetted on attamed

Te-pertfolly anbmuted
H $\prod^{1 /}$ BiLva
Chet Inspector ot Sutcty 1 pimenters

REPORT OF THE ENGINEER-PHYSIGIST

I have the honor to report upon the mepection ami a ammathon ot the a al- of the southbonnd tanck of the New York Centad \mathbb{A} IInchon
 where the second ection of tadm So 26 the Iwentieth Ceutur Limited en routr Liom Chicago to Xew York wae deaded on the monmong of Caclı 131912 it 855 a a m
The than consated of locomotivo No $341 \pm$ Pacife tr pe and seven cate the Iatto dll woth unclertames of ateel momelated as follom-

 Hade Pab Gtatoon The damage to the tade beoan in a wok wit The outer weat iall of the tiack was tom from the ties tor datance of 1 wis fect the geater pat of tha- lengeth heme on t dangern south of the chlur
 tur came to a -top without deadment exceptang the wheels of the rear avle of the tender the buffet a wemamed att whed to than locomolive wuth the we-t π heel- of ite ton wath tiuck on the web at the oredimed wat a all all othen wheel- of the calbenge on the the-

The -econd cal Ifmeove bioke loose and -topped 引li leed to the ran of the fomad and of the locomotive the photog phate print

 lon tiom the an betome it rame to a stop

 1008 leet to the aea of the fiont and of the low omotiae

 ave of the tonder when the focomotive came lo a top

 after the dexalument

 on the es uege sule ot thas a ald
 If wa- ent apat meat the moddle of an length and the noth end

tempen ath tead in the repaths to the tata bemg ub-equenth pe-

INTERSTATE COMLMERCE COMDIISSION

Abstract

RLPORT OF THE CHIEF INSPECTOR OF SAFETY APPLIANCES COVERING HIS INVESTIGATION OF A DERAILMENT WHICH OCCL'RRED ON THE NEW YORK CENTRAL \& HUDSON RIVER RAILROAD NEAR HYDE PARK, N Y, MARCH 31, 1912, ACCOMPANIED BY REPORT OF THE ENGINEERPHYSICIST OF THE BUREAU OF STANDARDS COVERING HIS INVESTI GATION OF THE IRACK CONDITIONS, AS WELL AS OF THE BROKEN RAIL SUPPOSLD TO HAVE CAUSED THIS DERAILMEMT

Gipicmbir E 1912
To tini Commission
On Mach 311012 a pas-enger tainn win deauled on the Xens York Cential \& IIudson River Ralioad near Hude Park X Y re-ulture in the mpur of 51 prassengen 1 tatimmm 3 portal emploveer i Pallman emplorees and 13 rlinng dat emplotes

After an muestigation as to the natme and antor of the acculent and of the curamstances connected therewith I beg to sulbmit the following report

I list tian was second No 26 and was hown a- the Clitago set thon of the Twantreth Centar Limated It conbsated of engrie No $3+1$ one bultet cal four sleepung cara one diming cal und one obsemation cal all ot steel constinction except the climing cal which hatl i wel

 pont about 1; males south of Herde Pak

Che Iturlson Drision of the Sen Yoik Cential \& Hudson Ruen
 line 1 unming noith and south The movement of tains ${ }^{\circ}$ g governed br automatic block sjghals The tade $1=$ Jatel with 100 -pound teel
 the tes had been tiented with cicosote and we plates wete med ent
 double upiked on the outside and angle spoked on the insalde an hole anele lans ane used to splice the a, als

no marls of consequence on the web of this tarl At some tage of the deralment the south end of 1 all No 2 mored in a westerly duectoon mereasing the gauge of the thack sufficiently to let a wheel on wheels down upon the mener flange and the occured while the tal was in nealy an lupught position
such spreating of the tiack could occu with the tal in an upight or nealy upught position only by displacement of the spukes on the outerde of the aal moring them outwand at then upper ende Spike holes were found in the ties in the ricmitr wheh showed they had heen forced outwad to an oblique position and sloping fiom the

Wen of duruled enta looking moith
liack I he ripper ends of the spike holes were clongated one or more drameters

Ihe tram 1 and on the mside conen of the head of and No 2 for mone than haif its length at its south end the wal at that stage hasing been talted outwand and resting on the outer flange of the base The obliquity of the alal was greatest at its south end at thin tage apparently judging faom the disturber metal at the function of the 1 unning sur face and the flange side of the head

Rall No 2 appeas to have sprung back or wat moved back and molishinctly shown by the photograph seems to aest upon and path corer some of the inside spikes

Ral So 3 was permanently twisted about $20^{\circ} \mathrm{ml}$ its full length Fion the evidence presented it would appen that thes rall wat in
the finst instance forced outwaid and was then followed by a torsional movement It about 6 feet from the receiving end the inside Hange was bend downwad and at the same place theie was a shap bend in the anl as a whole normal to the web and concrate on the gauge side of the ral I he downward bend of the flange probably occurred mmedately upon the spreading of the track and the botily bend took place after the anl had tuned over on ats side

There were numerous marks scosed on the mside suface of the web along two-mads of the length of the aul at its couthen end whle but few malks wele found on the northen one-thud Along

the northern pat there was etidence of wheels having atu on the mside comer of the head in the same manner as it occured on abl No 2

The photographic puint shows some seven undsturbed sprikes at the lecering end of iall No 3 , on the mside of the base This condition would agan molicate that a dinect ontwaid pieading of the track took phace There was a sharp bend in the mane flage of and No 3 17 to 18 inches fiom the leasing end and o bodily bend at the same place concare on the guage side Near the moddle of the length of the rall there was a shout chescent-chaped fange break on the gange shde The general condition of the thes remamed unchanged dow that pat of the track whelw was under wala Nos 1 to 3 Berond the leaving end of ram No 3 the the were mone on

less shattered by the wheels, and so contmued from that point southward

Rall No 4, the next rall in order following the direction of the train, was broken into a number of small fragments, which comprised about one-third its length, at the receiving end Figures Nos 1 and 2 show the appearance of the fractured parts These fragments were made when the rall was lying on its side Prion to its overturning it appeas that this ral had been spread, at least at 1ts north end The mer flange at pleces marked 1 a and 2 a was bent downward on the gauge side at a place 5 feet from the recerving end of the ral This was done before the line of faacture between preces 1 a and 2 a was formed, and constitutes evidence which is believed to show that spreading occurred prox to its oreituining
When lying upon ts side the wheels of the tran stunck the web of the sall heavily at a place about 6 feet 9 inches fiom its recening end At this place the initial point of fracture was found to be located The long, flattened, crescent-shaped break in the web under preces marked 2 and 3 , was apparently the first to be dereloped extending in each direction, north and south, fiom the imitial point, which was close under the head on plece 3 near the line of rupture which sepalated it from piece 2 The lines of rupture separating the web and base weie secondary, as were the fractures which detached preces 1a, 4, 4a, and 5 Undoubtedly some of the smaller fragments wese volently thrown about and recersed blows from different directions during the remaining stages of the deraiment There were wheel-flange marks on the web of rall No 4 and on the webs of some 25 other ranls located in the track in a southerly dinection beyond this point
dbreast rall No 4 and for a number of rall lengths beyond the ianls of the east side of the track were bent The photographic negative of the general view of the track, in the rock cut, shows that some of these east ralls were bent concave on their gauge sides the reproduced cut not showing this feature so clearly as the negative Which truck was accountable for this effect on the east rat of the track is conjectural, with the probability of its being one of the trucks of the forward cars of the tran or the rear axle of the tender

The rals nest south of No 4 were malked SI to SIV, inclusive The webs of these ralls were the most deeply grooved and sconed of any peitaning to the derallment The markngs were on the gauge side of each The inside flange of ranl marked SI was fractured in a number of places, and one piece detached from the base of SII
These foul tals weie bent concave on the gauge side shatp bends occurring at distances ranging from 7 to 8 feet from then recering
ends The bends were without doubt made by the wheels of the train in dropping from the splice plates to the webs of the ovestuined ralls There were also sharp bends about 18 neches from the leaving ends of the rails, caused by blows recerved when the wheels, runming on the web, encounteled the ends of the splice plates

Figure No 3 shows these four 1 alls, and a fifth one, the latter a rail from the east side of the track Bends, in SI to SIV some 7 to 8 feet from the recelving ends, appear in the cut This east rall of the photograph was concave on the gauge side The wheel-flange marks on the webs of rals SI to SIV were very pronounced, and were without a doubt made when the rall lay on its side with the head loward the west

No 3 - Four bent rats from track next south of broken rail No f teall on left sade of cut came from enst side of track This rail was bent concave on the galage side

The rarls which were located next south of the group, mariked "SI to SIV," also showed pronounced wheel-flange marks on the innes surtaces of the webs The markngs were less numerous on the rails farther down the track, finally disappearing at about the fourth ral from the southern end of the disturbed section Five cars having left the roadbed at an intermediate place the rals farther south were not exposed to the full number of wheels of the tram

There were other broken rails resulting from the deralment, the identity of some of which, in respect to position in the track, was not well established

Three rals were bent, two of which were broken which had the gauge side of each on the outside of the bend One fragment, 16 feet 5 unches long, was bent toward the gauge side, with a deflection of $8 \frac{1}{2}$ mehes One full-length ral had a deflection of 35 inches while

another was bent into the shape of a huge interrogation point, with a maximum deflection of 7 feet The upper end of this huge figure was the recelving end of the rarl

Figure No 4 shows the appearance of these bent and broken rals The one marked "Ice W 37 " was broken into three pieces These broken rals were found abreast of or in the vicinty of the five cars which left the roadbed and went into the river Some of the fragments went into the inver at its edge, while one plece was thrown a distance upon the ice, which at that time covered the river

The bends shown in the cat, which would be inwaid in diection ir the rall was upright, would take an upward turn when the rall was on its side If these rals were not the direct cause of the train separating probably some of them were bent by the last five cals of the tram

Erents pertaining to dals No 2 and No 3 were doubtless of pume importance in causing the wrecking of the tian, while the succeeding events were of secondary importance and the outcome of what happened to one or both of these rals The fracture of rall No 4 was a secondary affair, it is believed

Diop tests were made by the New York Public Service Commission on shoit lengths taken from the south end of rall No 4 Figure No. 5 shows a longatudmal crack made by the drop test in the base of one of its preces It was reported that the first blow of the drop test developed this crack in the base, 5 inches in length and one-haif meh deep The base was on the compression side, the rall having the head down in this test The cack was reported as having been due to the condition of the stinng face of the tup The second blow of the drop test factured the ral Two drop tests were made, the fractures of which were iepoited as not revealing any imperfections in the steel

It has been found in the examination of other ralls that the drop test did not ieveal imperfections which existed in the steel when the imperfections consisted of strealry and seamy metal, imper fections which were ievealed however, by bending the flanges of the base in a crosswise direction

An examination for structual soundness of these pieces tras subsequently made when the broken ends from the drop tests were returned to the Bureau of Standards Stieaks wele noticeably less prevalent in this ial than have been found in many earher examinations although streaks and seams had not in this ral been entirely elmmated A number of shout seamy streaks were revealed upon bending the flanges in a closswise direction Figure No 6 shows four pleces of the flanges of this anl on the functured surfaces of which appeat short ccamy stiealss, along the lines of which fractures
took place The curfaces of the ceams were bight ind luatione and fiee from oxadation 'I hece streahs were genemall locatcil neat but at a hont distance above the lower tuatace of the bane
A croas section of the tall was polished and etched with tincture of rochue an chown br figure No it thene were makne- on the

t, le e ll and e
bane whach the photogiaphac paint doen not bimo moto atern-thit in makings whirl were compratively ten and -mall in se I he
 some dal -teels exammed on other of abion- I he etchane oolution boonght oul muking an the lowe part of the heard and the mper patt of the web whech iplede in the at

This cioss section also show- the flange wean that had taken plue on the gauge sude of the hend lhe flange wear is evidence of the outward thinst of the wheels of the tian aganst this sat The wean evinbited by the outer caul of the southbound luak was much gleater than that of the cone-ponding ral of the nothbound track at thas cluse

Chemical analisec of samples talken fiom the piece of 1 ald shown

Tensule tests weie mute on -pecimens taken longitudmally fam the outside poition of the head and fiom the base The latter spectmens were taken moth longaturdinal and crossulise dinections

In the base -permens there were present longitudinal seams stieaks

The esulis of the temsile tests were as follows

I geme Vo - -how- wo of the spemen-whel were taken fiom the bate of the 1 all a the appeated betote and attet thattine br

 men the -thealh-wete at nght angle- to the lenoth of the - tem The

 -pecimen=

Flange fiactures of the base in a crosswle dinection are known to be the most common fiacture of aisls when in selvice 'These results show whe such ral fallune- are oven whelmingly in the majouts if the repetition of such result - are needed to establieli the cause

There reaults also show why sexeal of the wals concen ned m the present deıalment displayed good bending propertie- when longitudimally stramed, in one instance fommeng a loop $广$ feet veased sme while the flanges under crossmase bending neie broken with limoted clongation. In earlier reports mention has been made of the fact that

 Lppearance of specimens befone and after costing a pper plee of culd par longitudinal specminen elonk 2tion lis percent Lower plece of each pair crovsulse specimen elongallon 4 per ceat
specifications governing the acceptance of steel lals do not call for tests in the dinection in whicli anls most commonly fall but stan the steel in the direction parallel to that in which the treaky seane evtend when they are present

It may further be zemaked that steel-ral apecifications do not prescribe a alue for the ela-tic limit nor tensile atiength of the metal Since pactically all other -pecifications preacube lumita for one on both of the-e values it is not clear why the would be omited an steel-1 ul requirements

Specifications for spluce bats prescibe a value for the clastic limit of the metal Steel axles steel thes, and locomotive forgings all have a prescribed elastic limit or tensile stiength, on both values The and alone in this assochated group of material is accepted without test for elastic limit or tencile stiength It wall be a step in adrance when inose complete data we acquied concerning the physical condition rit the metal in stecl iank and coupled with that information a defimite know ledge of the stresses to which steel auls ate exposed under ustual seritice condlations

Lack of st uctmal somodness or contmanty tends to locate the place of 1 upture in steel when stressed and extennal andentations on de-rect- paticulats in hard steels have an effect simila to intenal atreake and seam-in locating the place of 1 upture when the steel is lested to de-tinction

An example of the piesence of an external madentation locating the
 a cection wheh was broken in the drop te-t conducted br the New York Public Selvec Commission and shown br figure Yo "
That section taken fiom ral No t was tested hate fown and bohe at the thud blow of the tup The thacture was munasual one in reapect to the dinection which the lines of rupture thaveled It was mfluenced by the madendition made be the lanad matha on the
 hand mak whach was located on the neb nean its punction with the head and above the nentalalas of the and A stan maked apon the cut molicates the meprent place of wopture whene a fine ande sade mg at the letter $I^{\text {º }}$ exterded though the letter 1 and a short distance beyond unden the hearl of the $1, a l$

The man line of applue tated fom tha han a ck at the letter ' F ' and extended in eat a duection anomd to the ba-e and also fiom the same point up thongh the numme suntace of tha head thus completmg the fracture and ceparation of the ral The widentation at the letter ' F ' was intually a surface defect canemg the line of
 hadness then succeptibulity to mjury fiom surface indentations on defects mereace and while the metal of this mal was not particulaly had fiom chemial composition vet the bland maked conctituted a surface defect which retiacted sufficiently from the ductility of the steel to Iocate the moripient place of 1upture

Figure No 10 chows the fractured sunfaces of the two diop-test specimens The cross uection on the ught of the cut represents the test with the bace down and on the web of wheli pointed ouf be the anon may be ceen the fine carck catised br the modentation of the letter F The crach did not reach thengli to the opposite surface of the wel)

The cross section on the left of the cut shows the appearanne of the fractured surface of the rall which was tested under the drop with the head down Frocture started at the corner of the ruming surface of the head and the gauge side. undicated by the arow marked on the cut The crack in the base of this test plece shown fiom the under side of the base on figure No 5 , ss here shown thened on end

Interest attaches to the condition of the track at rals Nos 2 and 3, as at existed just prior to the derailment Inasmuch as section men had been at work in that vicinity only a short time before the deralment it would be inferred that the alignment and surfacmeg of the track was believed to have been left in good condition That the means employed to mantain the track intact were for some reason madequate the result shows If the speed of the tran was greater than supposed, an exceptional stram may have been put upon the thack If the speed was an ordinary one no margin in strength existed There has been no evidence presented to show that the tran equapment was defective and led to the derailment Track in generdl in northern climates is less stiong as spring approaches, due to wintel cond tions requiring the use of shims to mantan the sufacing With the use of shims between the rails and the ties the spikes have diminushed holding pover, and furnish less resistance aganst spreading of the track Shums had been used on the track in this vicinity as customary on all track

Two features present themselves for consideration in an endeavor to ascube a direct cause for the deralment Was the speed of the tran greater than supposed, thus bringing a more severe thrust aganst the outer rall of the culve, or had the shmming been car ried too far, and by the use of thick shims lad the margin in stiength heen exhausted? Evidence points to the spreading of the track by a duect outwaid movement, as the first occurrence in the deralment followed by an overturning of the ials Since at is not possible to apportion the responsibility between or attach it mdiridually to one or the other of the probable causes, it would seem that the deralment should be attiubuted jountly to the effect of the high rate of speed of the tuan and to insufficient stiength in the spiking or biacing of the outer ral of the curve

The line of demarcation between safe and unsafe conditions has not been demonstrated in piactical ralway engineeing It is not lnown how much or how hittle margin of strength resides in the track It is a rare occulrence when direct experimental lesearch is made for the purpose of ascertaning the stresses which atals in sea 1 se ane called upon to sustan and yet such lonowledge should be the bass for judging of the safety of ralway thavel Thene us ungent need of information on the elastic and ultimate strength of tiock $i s$
constructed and used and also a direct determmation of the magmtude of the stresses which the track, under service conditions, is called upon to resist In few branches of engineering work can it be said that so meager information is avalable pertaning to the structural value of the materal and the workng stresses as in the case of ranway track the most common of all engineen ing stiuctures
In conclusion, it appeass that the probable primary cause of the deralment was the spreading of the track

That rals No 2 and No 3 of the outel 1 all of the curve were in the first instance forced honzontally outwad, followed by partial overturning in an outward direction when disengaged from the innes spike heads or about that time That ial No 1 was temporarily twisted and partially diew some of its spikes, but without inaterial displacement in position on the tiack
That rall No 4 was turned over on 1ts side and fractured in that position by some of the wheels of the forward part of the tran, the wheels 1 unnmg upon the web That ianls beyond No 4 were all turned over on then sides, down to where the locomotive came to a stop
That the spreading of the tiack was probably started by the engme and completed by other wheels of the tran
That there was insufficient strength in the spiking to mantan rails Nos 2 and 3 m place aganst the outward thrust of the engine, these and other rals displaced beng outside ones of the curve
A conjectural explanation of the cause of mability to withstand the thrust of the engme is the probability that the thack had been shimmed at this point and the holding power of the spikes imparred both against adhesive resistance in diawing from the thes, and for spikes on the outside of the rall, a loss in resistance agamst bemg bent outward The flange wear on the head of the outer rall of the curse showed the effect of the ontward thusts of the trans

Deralments of this land emphasize the need of definte information on the magnatude of the stresses under different concunstances in the outer 1 anls of curses caused by tran loads

Respectfully subuntted

James E How ard
Enquneer-Physacost

